Нанотехнологии
Википедия
Нанотехнологии
Нанотехнология представляет собой междисциплинарную область прикладной и фундаментальной науки и техники, которая имеет дело с совокупностью теоретическог... читать далее »
Новости Нанотехнологий
15.12.2013 12:53

Исследователи разработали материал, обладающий эффектом памяти формы на наноразмерном уровне. Нанотехнологии.

Исследователи разработали материал, обладающий эффектом памяти формы на наноразмерном уровне
Исследовательская группа из лаборатории Беркли (Berkeley Lab) обнаружила новый способ искусственного создания внутренних механических напряжений внутри и на поверхности специального сплава железа и висмута, что придает этому материалу так называемое свойство запоминания формы. Создаваемые внутренние напряжения проявляются на участках сплава наноразмерного уровня, что позволяет материалу восстанавливать свою первоначальную форму с невероятно высокой точностью.

Кроме этого, новый сплав может восстановить свою форму при деформации порядка 14 процентов от изначальной формы, что является самым высоким показателем для подобного эффекта когда-либо наблюдаемого в любом металлическом соединении.

Разработка материала, обладающая столь замечательным эффектом памяти формы, позволит использовать этот материал в чрезвычайно широком ряде областей включая медицину, энергетику и электронику.

«Наш железно-висмутовый сплав показал поистине чемпионское значение силы эффекта памяти формы, сохраняя этот эффект на устойчивом уровне вплоть до наноразмерного уровня частиц сплава» – рассказывает Джинксин Занг (Jinxing Zhang), бывший ученый из отдела материаловедения лаборатории Беркли, а ныне профессор из одного университета в Пекине, – «Более того, наш функция памяти формы нового сплава может быть активирована с помощью электрического тока, а не высокой температуры, как это имеет место быть с другими металлическими сплавами. Такая способность позволяет нашему сплаву восстанавливать свою форму намного быстрее, чем другие сплавы».

Эффект памяти формы является «металлическим» аналогом свойства эластичности, когда материал «помнит» свою изначальную форму и возвращается к ней, будучи деформирован с помощью приложенных внешних воздействий. В прошлом для восстановления изначальной формы объектов, изготовленных из специальных металлических сплавов, всегда применяли нагрев объекта до относительно высокой температуры. Это является своего рода проблемой, особенно с учетом того, что сплавы на основе титана и никеля с памятью формы широко используются в медицине при создании имплантатов и механических суставов протезов.

Новые электрически активируемые сплавы с памятью формы могут найти широкое применение не только в медицинской области, их можно использовать при создании различных сервоприводов, «умных» материалов и микроэлектромеханических систем (MicroElectro-Mechanical Systems, MEMS).

Огромную роль в этом сыграет память формы, реализованная на наноуровне, что позволит избежать возникновения эффекта усталости, окисления, появления микротрещин и других отрицательных эффектов, воздействию которых подвержены обычные металлические сплавы, обладающие памятью.

«Применение комбинации электрического тока и электрического поля позволяет нам получить обратимые фазовые превращения структуры материала. Такая способность позволит использовать железно-висмутовые сплавы везде там, где требуется не только одноразовое действие эффекта, а его постоянное циклическое проявление» – рассказывает профессор Занг, – «А высокое значения эффекта памяти, плюс его наноразмерная реализация делают наш новый сплав одним из первых кандидатов на его применение в микроэлектромеханических системах, в наноразмерных устройствах и механизмах».

Источник

© WIKI.RU, 2008–2017 г. Все права защищены.