Информационные технологии
Операционные системы
Информационные технологии
Информационные технологии представляют собой широкий класс дисциплин и сфер деятельности, которые относятся к технологиям создания, хранения, управления, ... читать далее »
Статьи по ИТ
29.06.2009 00:00

Четвертое поколение ЭВМ 1974 – 1982 . Информационные технологии.

Новым этапом для развития ЭВМ послужили большие интегральные схемы (БИС). Элементная база компьютеров четвертого поколения это БИС. Стремительное развитие электроники, позволило разместить на одном кристалле тысячи полупроводников. Такая миниатюризация привела к появлению недорогих компьютеров. Небольшие ЭВМ могли разместиться на одном письменном столе. Именно в эти годы зародился термин «Персональный компьютер». Исчезают огромные дорогостоящие монстры. За одним таким компьютером, через терминалы, работало сразу несколько десятков пользователей. Теперь. Один человек – один компьютер. Машина стала, действительно персональной.

Характеристики ЭВМ четвертого поколения

    * Мультипроцессорность
    * Языки высокого уровня
    * Компьютерные сети
    * Параллельная и последовательная обработка данных

Первым мини-компьютером считают PDP-8 корпорации DEC. Эта машина создавалась для управления ядерным реактором. Но она стала популярна на частных производственных предприятий и в высших учебных заведениях. Ее массовый выпуск начался 1965 году и к началу 70-х количество этих ЭВМ превысило 100 000 штук. Важный переход от мини-компьютеров к микро-компьютерам, это создание микропроцессора. Благодаря БИС стало возможным разместить все основные элементы центрального процессора на одном кристалле. Первым микропроцессором стал Intel-4004 созданный 1971 г. Он содержал в себе более двух тысяч полупроводников, которые разместились на одной подложке. В одной интегральной схеме разместились арифметическое - логическое устройство и управляющее устройство.

Одним из первых персональных компьютеров четвертого поколения считается Altair-8800. Созданный на базе микропроцессора Intel-8080. Его появление стимулировало рост периферийных устройств, компиляторов высокого уровня.

Интегральные схемы можно классифицировать по количеству элементов размещенных на одном кристалле:

    * ПИС – (Простые интегральные схемы) до 10 элементов
    * МИС – (Малые интегральные схемы) до 100 элементов
    * СИС – (Средние интегральные схемы) до 1 000 элементов
    * БИС – (Большие интегральные схемы) до 10 000 элементов
    * СБИС – (Сверхбольшие интегральные схемы) до 1 000 000 элементов
    * УБИС – (Ультрабольшие интегральные схемы) до 1 000 000 000 элементов
    * ГБИС – (Гигабольшие интегральные схемы) свыше 1 000 000 000 элементов

Большая интегральная схема – усовершенствованный потомок простой интегральной схемы. Которая являлась одним из основных элементов предыдущего поколения. Большой, ее называют, не потому что интегральная схема большая, а потому что в ней высокая степень интеграции.

Процесс изготовления БИС выглядит следующим образом. Над кристаллом наносится светочувствительный слой фоторезист. Который в дальнейшем засвечивается над шаблоном. После этого негатив проявляют. Удаляют те области которые засвечены. В образовавшиеся пробелы фоторезиста вводят примеси. После отжига кристалла проводят аналогичные операции используя при этом разные фотошаблоны. Каждый шаблон отвечает за образование определенной группы элементов интегральной схемы. В заключительной стадии изготовления БИС применяются фотошаблоны, которые формируют алюминиевые дорожки для соединения цепей сложной конфигурации. БИС стали одними из первых продуктов электроники которые выпускаются только серийно.

В дальнейшем стали выпускаться программно-управляемые БИС. Функции такой схемы меняются в зависимости от программы, которая тоже напыляется на отдельном кристалле. Данная БИС состоит из операционной части и программы. Ввод программы в БИС, настраивает ее на определенный класс задач. Одна и та же интегральная схема может работать и как арифметическое устройство и как управляющее устройство.

Применение БИС дало резкое улучшение основных показателей скорости работы и надежности. Такая высокая степень интеграции, привела к уменьшению числа монтажных операций, уменьшила количество внешних соединений, которые изначально не надежные. Это очень способствовало уменьшению размеров, стоимости и повышению надежности.

Однако появление БИС привело и к появлению проблем. Одна из главных это проблема теплоотвода. Чем выше степень интеграции схемы тем выше тепловыделение. Требуется постоянное охлаждение, без которого интегральная схема перегреться и сгорит. Существует также проблемы: межсоединений элементов, контроля параметров. Большие интегральные схемы уже начали применять в третьем поколении. Пример System/360.

Проводя исследования удалось создать модели интегральных схем. Которые работают со скоростью в несколько миллиардов операций в секунду. При создании опытных образцов выяснилось, что невозможно пустить их в серийное производство. Оказывается при современном развитии техники достижение таких скоростей невозможно вообще. И проблема не в инженерных решениях. А в необходимости достижения абсолютно чистых химических материалах, однородности кристалла, стабильных температурных режимах. Взаимодействие электрических полей внутри кристалла.

Кроме изменения технической базы четвертого поколения ЭВМ, изменилось и направление создания этих машин. Они проектировались с расчетом на применение языков программирования высокого уровня, многие на аппаратном уровне были спроектированы под определенные операционные системы.

Один из самых популярных компьютеров четвертого поколения это IBM System/370. Который в отличи от своего предшественника третьего поколения System/360, имел более мощную систему микрокоманд и большие возможности низкоуровневого программирования. В машинах серии System/370 программно была реализована виртуальная память. Когда часть дискового пространства отводилась для использования хранения временных данных. Тем самым эмулировалась оперативная память. У конечного пользователя создавалась впечатление, что ресурсов у машины больше чем есть на самом деле.

Технические характеристики ЭВМ четвертого поколения

    * Применение модульности для создания программного обеспечения
    * Средняя задержка сигнала 0.7 нс/вентиль
    * Впервые модули операционной системы начали реализовывать на аппаратном уровне
    * Базовым элементом оперативной памяти стал полупроводник. Чтение запись 100-150 нс.
История ЭВМ
К четвертому поколению советских ЭВМ можно отнести: ЕС-1015, ЕС-1025, ЕС-1035, ЕС-1045, ЕС-1055, ЕС-1065. Персональные компьютеры, которые стали популярны в быту: Электроника-85, Искра-226, ЕС-1840, ЕС-1841, ЕС-1842. К этому поколению относиться и многопроцессорный компьютер «Эльбрус». Применяемый на производстве и машиносчетных станциях. Позже его сменил «Эльбрус-2». Вычислительная мощность этой машины, для четвертого поколения, была очень велика. Он имел порядка 64 мегабайт оперативной памяти, мог выполнять до 5 миллионов операций, с плавающей точкой, в секунду. Пропускная способность шины до 120 Мб/с.

ЭВМ четвертого поколения являются машинами массового применения. Они способны заменить ЭВМ предыдущего поколения во всех сферах человеческой деятельности. В управлении технологическими процессами предприятий, торговле, инженерных расчетах, справочных центров, регулировании транспортного движения, билинговых системах.



















источник: www.chernykh.net

 

© WIKI.RU, 2008–2017 г. Все права защищены.