Физика
Оптика
Общая характеристика световых явлений.
Фотометрия и светотехника.
Основные законы геометрической оптики.
Применение отражения и преломления света для получения изображения.
Оптические системы и их погрешности.
Оптические приборы.
Интерференция света.
Дифракция света.
Физические принципы оптической голографии.
Поляризация света и поперечность световых волн.
Шкала электромагнитных волн.
Спектры и спектральные закономерности.
Действия света на вещество.
Википедия
Физика
Физика - это область естествознания, наука. Она изучает самые общие и фундаментальные закономерности, которые определяют структуру и эволюцию материальн... читать далее »
Новости по Физике
23.05.2013 19:53

Одиночный атом фосфора оказался неплохой основой для квантовых компьютеров. Физика.

Одиночный атом фосфора оказался неплохой основой для квантовых компьютеров
В конце 1990-х австралийский физик Брюс Кейн (Bruce Kane) предложил создать элемент квантового компьютера на базе атома фосфора, помещённого на кремниевую основу. 

Идея была в том, что спин ядра атома фосфора может хранить кубит неограниченно долго, а магнитное поле хорошо отработанными методами магнитно-резонансной спектроскопии позволит манипулировать этим кубитом.

Увы, все последующие попытки физиков из Нового Южного Уэльса реализовать этот подход упирались в одну значимую сложность: с помощью одного только магнитного поля очень нелегко записывать и считывать информацию со спина индивидуального электрона, вращающегося вокруг атома фосфора. Между тем подход кажется очень привлекательным: интеграция элементов квантового компьютера на кремниевые микросхемы позволит относительно легко «сращивать» квантовые и обычные вычислительные мощности и масштабировать первые до весьма значимых размеров.

Теперь Джеррид Пла (Jarryd Pla) вместе с коллегами по Университету Нового Южного Уэльса (Австралия) заявляет, что эту проблему удалось решить.

Физики «имплантировали» одиночный атом фосфора на кремниевую наноструктуру, затем поместив их в магнитное поле и охладив до температуры, близкой к абсолютному нулю, чтобы избавиться от влияния тепловых колебаний на атом и опасной для квантовых процессов декогеренции. Далее, воздействуя на атом микроволнами, учёные меняли его спин, реализуя тем самым запись одиночного кубита.

А чтение? О, тут были проблемы: микроволны годились для записи, а вот считывание оказалось не таким простым.

Чтобы обеспечить переход к чтению, учёные конвертировали спин в заряд, дабы изменение заряда кубита позволяло узнать его спин. При этом один атом фосфора за счёт взаимодействия с соседним потенциально может выполнять двухкубитные операции, что и составляет минимально необходимую базу для создания легко масштабируемого квантового компьютера.



Это, разумеется, не единственный подход, позволяющий надеяться на развёртывание подобных систем. Кроме D-Wave Systems, уже продавшей первые квантовые компьютеры Lockheed Martin и Google, есть и иные варианты, включая использование тех же азот-углеродных вакансий в алмазе. Австралийский же подход, хотя и обеспечивает лучшую интеграцию с современной кремниевой электроникой, как и конкуренты, требует охлаждения элементной базы до температур, близких к абсолютному нулю, а это чревато существенными практическими сложностями... В общем, что-то подсказывает нам, что гонка квантовых компьютеров всё ещё находится в самом начале, а путь будет очень долгим...



Источник

© WIKI.RU, 2008–2017 г. Все права защищены.