Физика
Оптика
Общая характеристика световых явлений.
Фотометрия и светотехника.
Основные законы геометрической оптики.
Применение отражения и преломления света для получения изображения.
Оптические системы и их погрешности.
Оптические приборы.
Интерференция света.
Дифракция света.
Физические принципы оптической голографии.
Поляризация света и поперечность световых волн.
Шкала электромагнитных волн.
Спектры и спектральные закономерности.
Действия света на вещество.
Википедия
Физика
Физика - это область естествознания, наука. Она изучает самые общие и фундаментальные закономерности, которые определяют структуру и эволюцию материальн... читать далее »
Статьи по Физике
18.10.2009 00:00

Определение длины световой волны с помощью колец Ньютона. . Физика.

Для того чтобы использовать интерференционные явления, в частности кольца Ньютона для измерения длины волны, надо подробнее рассмотреть условия образования максимумов и минимумов света.

При падении света на пленку или тонкую пластинку часть света проходит сквозь нее, а часть отражается. Предположим, что монохроматический свет длины волны l падает на пластинку перпендикулярно к ее поверхности. Будем рассматривать малый участок пластинки, считая его плоскопараллельным. На рис. 268 изображен ход лучей в пластин-

Рис. 268. Ход отраженных и проходящих лучей при двукратном отражении в пленке
ке, причем для наглядности лучи изображены не вполне перпендикулярными к ней. В отраженном свете имеем луч 1, отраженный от верхней поверхности пластинки и луч 2, отраженный от нижней поверхности. В проходящем — луч 1', прямо прошедший через пластинку и луч 2', отразившийся по одному разу от нижней и от верхней поверхностей.

Рассмотрим сначала проходящие лучи. Лучи 1' и 2' обладают разностью хода, так как первый прошел через нашу пленку один раз, а второй — три раза. Образовавшаяся разность хода при нормальном падении света есть AB+BC+CD—АВ=ВС+CD=2h, где h — толщина пластинки. Если эта разность хода равна целому числу волн, т. е. четному числу полуволн, то лучи усиливают друг друга; если же разность хода равна нечетному числу полуволн, то лучи взаимно ослабляются. Итак, максимумы и минимумы получаются в тех местах пластинки, толщина которых h удовлетворяет условию

причем минимумы соответствуют нечетному значению n=1, 3, 5, ..., максимумы соответствуют четному значению n=2, 4, ... Таковы выводы для проходящего света.

В отраженном свете разность хода между лучами 1 и 2 при нормальном падении света есть AB+BC=2h, т. е. такая же, как и для проходящего света. Можно было бы думать, что и в отраженном свете максимумы и минимумы будут на тех же местах пластинки, что и в проходящем свете. Однако это означало бы, что места пластинки, которые меньше всего отражают света, меньше всего и пропускают его. В частности, если бы вся пластинка имела одну и ту же толщину и притом такую, что 2h равно нечетному числу полуволн, то такая пластинка давала бы и минимальное отражение и минимальное пропускание. Но так как мы предполагаем, что пластинка не поглощает света, то одновременное ослабление и отраженного, и пропущенного света невозможно. Само собой разумеется, что в непоглощающей пластинке свет отраженный должен дополнять свет прошедший, так что темные места в проходящем свете соответствуют светлым в отраженном и наоборот. И действительно, опыт подтверждает это заключение.

В чем же ошибочность нашего расчета интерференции отраженных световых волн? Дело в том, что мы не учли различия в условиях отражения. Некоторые из отражений имеют место на границах воздух — стекло, а другие на границах стекло — воздух (если речь идет о тонкой стеклянной пластинке в воздухе). Это различие приводит к возникновению дополнительной разности фаз, которая соответствует дополнительной разности хода, равной l/2. Поэтому полная разность хода для лучей, отраженных от верхней и нижней поверхностей пластинки толщиной h, равняется 2h+l/2. Места минимумов соответствуют условию

где m — нечетное число; места максимумов — четным значениям m. Следовательно, максимумы и минимумы получаются в тех местах пластанки, толщина которых h удовлетворяет условию

причем (m—1) обозначено через n. Минимумы соответствуют четным значениям n=0, 2, 4, ..., максимумы соответствуют нечетным значениям n=1, 3, 5, ...

Сопоставим результаты, полученные для определения положения максимумов и минимумов в проходящем и отраженном свете. Положения максимумов и минимумов соответствуют толщине пленки, определяемой из условия:, причем:

Таким образом, области максимумов в проходящем свете соответствуют областям минимумов в отраженном и наоборот — в согласии о опытом и в высказанными выше соображениями.

Применительно к кольцам Ньютона, которые обычно наблюдаются в отраженном свете (§ 126), получаем, что места максимумов соответствуют нечетным значениям n=1, 3, 5, ..., а места минимумов — четным n=0, 2, 4, ... Центральный (нулевой n=0) минимум имеет вид темного кружка, следующее пермое темное кольцо соответствует
 n=2, второе n=4 и т. д. Вообще номер N темного кольца связан с числом я соотношением N=n/2. Номер N светлого кольца выражается через n формулой N=(n+1)/2.
Вместо определения толщины h того места воздушной прослойки, которое соответствует кольцу номера N, удобнее измерять диаметр или радиус соответствующего кольца. Из рис. 269 следует: R2=(R—h)2+r2 и, следовательно, толщина прослойки h связана с радиусом кольца r и радиусом линзы R соотношением

 Для опытов с кольцами Ньютона пользуются линзами о очень большим радиусом R (несколько метров). Поэтому можно пренебречь величиной ft по сравнению с 2R и упростить последнее соотношение, записав:


Рис. 269. К расчету радиусов колец Ньютона
Итак, для определения длины волны l с помощью колец Ньютона имеем

Если измеряются радиусы темных колец, то номер кольца N=n/2. В таком случае длина волны выразится формулой

где rN есть радиус N-го темного кольца.

Проводя измерения радиусов светлых колец, мы должны иметь в виду, что N={n+1)/2. В соответствии с этим получаем соотношение

где rN есть радиус N-ro светлого кольца.









Источник

© WIKI.RU, 2008–2017 г. Все права защищены.