Агромир
Агромир
Сельское хозяйство является отраслью народного хозяйства, которая направлена на обеспечение населения необходимым продовольствием и на получение сырья для... читать далее »
Статьи об Агромире
17.06.2013 16:47

Будет ли следующая "зеленая революция"?. Агромир.

Будет ли следующая "зеленая революция"?
Население нашей планеты постоянно увеличивается, а рост сельскохозяйственного производства недостаточен для обеспечения пищевых потребностей.

 В 1960-е годы многие развивающиеся страны оказались на грани голода — тогда кризиса удалось избежать благодаря «зеленой революции», отцом которой считают американского ученого Нормана Борлоуга. 

За прошедшие десятилетия генетика и биотехнология сделали еще несколько шагов вперед, настолько важных, что впору говорить об очередном революционном скачке в сельском хозяйстве. Речь идет о создании высокопродуктивных гибридов, способных размножаться по механизму апомиксиса, то есть давать семена бесполым путем. Передовые исследования в этой области ведут ученые из лаборатории цитологии и апомиксиса растений Института цитологии и генетики Сибирского отделения РАН в Новосибирске. 

Триумф карликов
В 1970 году Норману Борлоугу присудили Нобелевскую премию мира за так называемую «зеленую революцию». В чем же она заключалась? К середине XX века сельское хозяйство получало огромное количество минеральных удобрений, но существующие сорта растений не могли эффективно трансформировать их в урожай зерна. Из-за высоких концентраций питательных веществ в почве злаки быстро росли, набирали зеленую массу, а затем полегали, что существенно снижало намолоты. При этом индекс урожая (отношение веса зерна к общему весу наземной массы) был значительно ниже 50 процентов, то есть основным продуктом оказывались солома и листья (даже в пересчете на сухое вещество). 

Для борьбы с полеганием Борлоуг предложил использовать растения с коротким стеблем. Признак короткостебельности достаточно просто контролируется генетически и легко передается через гибридизацию. Полученные Борлоугом полукарликовые сорта также формируют большую наземную массу, но уже за счет высокой кустистости, при этом не полегают и дают хороший урожай с индексом около 50 процентов. Кроме того, эти сорта обеспечивают более эффективное использование удобрений. 

Растения обычных сортов вначале накапливают соединения азота в зеленой массе, а затем после цветения переносят их в зерновки. Короткостебельные сорта отличаются тем, что восстанавливают и переносят азот до тех пор, пока не закончится налив семян. Усвоение азота из почвы у них продолжается много дольше и приводит к большей продуктивности. Благодаря «зеленой революции» Мексика за 15 лет увеличила производство пшеницы в три раза (на аналогичный прирост Европе потребовалось 150 лет) и из крупнейшего импортера превратилась в экспортера зерна. 

Залог успеха «зеленой революции» в том, что базовый признак, на основе которого строилась селекционная технология, имеет простой генетический контроль и со 100-процентной вероятностью передается потомкам. Именно это позволило создать и поддерживать необходимую на практике устойчивую генетическую систему.
Незамеченная сенсация
В конце прошлого века наиболее сенсационным научным событием стало, несомненно, клонирование овцы в Эдинбурге (Великобритания). Нет ничего удивительного в том, что эти эксперименты взбудоражили общество: результат, полученный на млекопитающих, впечатляет уже потому, что его можно явно или неявно примерить к человеку. Овечка Долли настолько приковала к себе всеобщее внимание, что на этом фоне в России остались незамеченными сообщения об «апомиктической революции» и ее перспективах, появившиеся в западных популярных и научных изданиях. 

Апомиксис — специфический способ размножения, позволяющий получать абсолютные генетические копии материнского растения, то есть созданная природой технология клонирования. Чтобы понять, в чем заключается принципиальное значение апомиксиса для селекции, начнем со сравнительного анализа полового и апомиктичного типов размножения. 

Зачем растениям половое размножение?
Наиболее часто встречающийся и знакомый всем половой способ размножения сельскохозяйственных растений связан с циклическим чередованием спорофитной и гаметофитной фаз. Спорофит — обычная, наблюдаемая нами форма растений, несущая двойной набор хромосом. 

Гаметофитная фаза у цветковых растений весьма коротка и характеризуется одинарным (гаплоидным) набором хромосом. Напомним, что хромосомы — это структурные элементы ядер клеток, в которых содержится ДНК, несущая практически всю генетическую информацию. Каждый вид растений имеет строго определенное число и характерную форму хромосом. В световой микроскоп хромосомы можно увидеть только тогда, когда клетка начинает готовиться к делению и ДНК конденсируется с помощью белков. 

Специальные клетки в органах размножения, имеющие двойной набор хромосом, проходят клеточное деление особого типа — мейоз. Образуются микроспоры (мужские клетки) и мегаспоры (женские клетки), которые несут одинарный хромосомный набор. Эти клетки снова делятся, но уже по механизму митоза, при котором число хромосом в дочерних клетках не изменяется. Из микроспоры формируется трехъядерная пыльца, а из мегаспоры — восьмиядерный зародышевый мешок, заключенный в материнскую семяпочку. После оплодотворения образуются диплоидный зародыш и триплоидный эндосперм. 

Замечательное следствие этих событий в том, что набор хромосом во вновь образованных спорофитах снова диплоидный, но генотип каждого потомка (совокупность генов) качественно отличается от родительских и между собой, то есть каждый потомок уникален и непохож на родителей. 

Зачем нужны такие довольно длинные пути создания и объединения половых продуктов? Казалось бы, проще размножаться почкованием, чем тратить энергию и строительные материалы на формирование органов полового размножения, тем более, что всегда есть риск, что растение окажется неопыленным, то есть не оставит потомства и выбудет из борьбы за существование. Однако смысл в том, что живым организмам необходимо постоянно адаптироваться к изменяющимся условиям среды, то есть иметь запас вариабельности, что и достигается через комбинативную изменчивость, сопровождающую половое размножение. 

Так, например, у ячменя имеется 7 пар хромосом, поэтому при формировании гаплоидных половых клеток возможны 128 (27) вариантов их комбинаций. В свою очередь при оплодотворении возможное число вариантов потомков будет равно числу сочетаний из 128 по 2, что обеспечивает огромный резерв изменчивости. 
Кроме того, размножение через семенную фазу в отличие от вегетативного служит мощным барьером против клеточных инфекций. Вспомните, сколько проблем доставляет картофель, который поражают более 500 видов внутриклеточных паразитов. 

Что дикому хорошо, то культурному — смерть
Если в дикой природе комбинативная изменчивость — необходимый компонент устойчивости и приспособляемости вида, то у культурных сортов она нежелательна, так как разрушает ценные комбинации генов, контролирующих хозяйственно-полезные признаки, по крупицам собранные поколениями селекционеров. Поэтому существует настоятельная необходимость уйти от половой репродукции, и одна из возможностей сделать это — бесполосеменное размножение (апомиксис). При апомиксисе жизненный цикл укорочен, а эмбриогенез осуществляется в результате деления неоплодотворенных клеток, не прошедших через редукцию (стадию уменьшения) числа хромосом. При этом происходит передача полного материнского генотипа следующему поколению, то есть клонирование. 

В основном у растений встречаются два типа апомиксиса — диплоспория и апоспория. При диплоспории зародышевый мешок развивается из материнской клетки мегаспоры, не прошедшей мейоза, и таким образом неоплодотворенная яйцеклетка, которая далее дает начало следующему поколению, воспроизводит генетическую копию материнского растения. При апоспории зародыш формируется из соматической клетки и также является абсолютным генетическим клоном. 

Отсюда можно заключить, что бесполосеменное размножение позволяет поддерживать генетически стабильный клон через семенное размножение неограниченно долго. Если добиться наследствен но контролируемого превращения половых растений в апомиктические, то мы революционизируем селекционные технологии. Так, например, гетерозисные (высокопродуктивные) гибриды экономически очень выгодны. Однако их использование рентабельно только тогда, когда от одного акта опыления получают не менее 500-1000 семян. По этим причинам гетерозис успешно реализован на практике лишь у многосемянных культур (кукуруза, томаты, огурцы). Основные хлебные злаки и рис, несмотря на многочисленные попытки, остались за чертой гибридной селекции; между тем решение этой проблемы позволило бы увеличить производство на 15-30 процентов на уже освоенных площадях. 

Многие дикие растения апомиктичны от природы (одуванчик, мятлик, лапчатка), однако среди культурных видов их единицы (некоторые кормовые травы, малина, земляника). У читателя может возникнуть вопрос: если апомикты имеют столько замечательных качеств, почему они оказались вне практического использования? Ответ прост: именно отсутствие необходимой для совершенствования растений вариабельности не позволяло отбирать среди них ценные для селекции варианты. Еще в самом начале окультуривания растений человек неосознанно работал с материалом, способным выщеплять необходимые для улучшения признаки, что позволяло пересортировывать их, используя половое размножение, и таким образом совершенствовать агрономические качества. Апомиксис как раз исключает эту возможность. В свое время отсутствие расщепления в опытах на апомиктичной ястребинке заставило Менделя усомниться во всеобщем характере принципов гибридологического поведения признаков, открытых им на горохе. По этой же причине только в самое последнее время удалось селекционно улучшить некоторые апомиктичные кормовые травы. 



© WIKI.RU, 2008–2017 г. Все права защищены.